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Introduction

Integration of sustainable hydrogen (H,) production with capture of associated
greenhouse gases & carbon, & local use of co-products:

« facilitate an emerging circular economy,
* help the water industry to achieve net zero carbon emissions,
 supply chain security for water treatment chemicals.

In particular, green hydrogen & co-products such
as O,, O; and H,0, are essential within an
emerging circular economy:

» sustainable fuels,
» chemical synthesis feedstocks,
 oxidising agents for AOP.
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Introduction

Wastewater treatment plants produce large quantities of recycled water & biogas,
providing co-location opportunities for hydrogen production and alternative reuse
prospects:

Water source concerns for sustainable hydrogen,

Reinforces circular economy principles of wastewater as a valuable
resource,

Avoids potentially harmful wastewater discharges to the environment,

Reduces capital expenses by using existing infrastructure, land, & supply
chains.

+ recycled-water-based drought schemes may have potential for hydrogen
production during non-drought periods.



Challenge

While hydrogen production opportunities may add significant value to WWTP operations:
* Associated risks
» Viability?
« Scalability?
« Urban and regional perspectives?
» Value proposition of a hydrogen circular economy to water industry stakeholders?

Objective

Understand these concerns and provide site-specific guidance to prospective utilities
aiming to address technical considerations of feasibility, scalability and viability

Formulate a decision tree to support utility decision-making and risk assessment.
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Economic viability

Understand the economic viability of hydrogen production:
* Projected future demands for hydrogen & associated supply chain

o The global hydrogen industry is expected to increase 40% by 2030, with
Australia aiming to become a leading exporter of hydrogen, with
potential export values of $5.7bn by 2040.

o To accelerate the development of a hydrogen economy and transition to
a decarbonised future, we need to produce “clean” hydrogen at under
AU$2.00 per kilogram.
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Economic viability

Understand the economic viability of hydrogen co-products:

* Projected future demands for co-products: O,
o The global O; market size was valued at USD $ 880 million in 2016 and is expected
to grow at a compound annual growth rate (CAGR) of 7.4% from 2017 to 2023.

o Oj generators predominantly use air as the feed, but when oxygen is used, more
ozone can be generated at lower energy consumption.

 Projected future demands for co-products: H,0,
o Use in water industry; food, paper and pulp; chemical manufacturing; pharmaceutical
& health; disinfectant products.

o The global hydrogen peroxide market size was valued at USD 1.44 billion in 2020
and is expected to grow at a compound annual growth rate (CAGR) of 5.7% from
2020 to 2028.

o Can production of co-products offset the production cost of H,, bringing the cost
‘ . of H, production down to the targeted $2/kg?
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Technical viability

The technical viability of recycled-water-based hydrogen production also
presents many research questions:

o Performance of electrolysers (which split water into hydrogen and
oxygen in the presence of a catalyst)

» low pH conditions ideal for hydrogen reduction
o Volumes of (recycled) water required
O Optlmal Operating conditions Principles of electrochemical water splitting

o Impacts of contaminants in wastewater: t
e organic compounds |
* metal ions

* nutrients
* inorganic debris
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Technical viability: WaterRA factsheet

https://lwww.waterra.com.au/ r11390/media/system/attrib/file/2690/WaterRA FS 1136 HydrogenEconomy.pdf

Water
¥ Research

AUSTRALIA

Zozaua nleciicd moey pererted by reneensis souraa indudng
phobw ke sysiurme chriey daytight hours rockd be used i power

g i1
et (7113 | ot of which are auns=tel remecals S e smaging
L [ -

s addbonel riresiea cnven e neseron. Inoeer Aakralier atn
of

may s M, wed 5 mrades fon sfidencea and redics slecirabyass
Feman T e calily for s proces i therety e orrad
iyt by bvpuriien: s imencde shechmche micsl H,7H 0, production

imtng 2, aetnsliching poirlsives ter alerroyser detign ard W TR

spariicr wnd mgrvemrant.

Principles of electrochemical water splitting

Carkade [

T Scfmmate of thr et wecies apletrg rorem
[T e,

oot exkicacr remcitrs WO Expatee, 3| st i ancehe i st
ez o vras o i s U g 1] e s
fooria ol b revle mm trarnperter] Bwsph.a pridon e
e (FEM 1z artedy the slaztochermecd salf o e
s ks 1111, e, s Bl vl o
dectrochr rical weker 1pitg i mp i b ‘rhckin” e ey e
i tychogen Prckicton e wems cxedaten 12| 1 eacral e trxcherracel
acemms, an sk b v v 2 din wazez
e Fw chap T s e S s s e

e b s ey crrer chm b e g ey ey
e k. i amp by-grosit. Pyt prosoed v e oSty
Esumter 1 car b fond rereperted, fn o ches moan eay s
i ectiee moarhonenmsial opcle Anoites sftwcties produc of wke

sciitncy . tyckrgpen paocthe (Foparin 2 anel Sy which oae b Ltierd

@ e T - i 3o 3 e
= s s ey gt bl mefn By zormanp 4w elemrree s
el e s e, H, B gy ycrogen mecion
T Y T |l —]
it o e et o feov (W E-sumion 2] sl the coftecks

Uit 6 by S5

ey ey =

Ehertn inaca wiirreoted b= ke - g caraie sisdes o

‘- omt Py vy e o et ey e okt [.4] 2
P ciezmh 2 errerery, e amb &y of chezTode s i
ey reiEraney @ shi etz ey, s pe o
g an g s oo 1

A1+l <, [E, 0w BHE] IHER, gtz 1)

Oye e s a0 [E o o088 e E] O Emsem ]

B0 o2 w0, o B L AT v W] O Ecpsen 3]

Collabmesis nsovaks g

impacts of electrolytes

Iindﬁ:uxmc—xnnlm.undxrm ity by

1 vl ey o esiriny n
Sarade o comre i, enet pas pentars @ S
g tme ey = siemdey i rm s vk e v
P ot chap SO S ] Yy DR SR
kg i afarts b ek cotr mo e s eerimord
£ weie: £ cormny, mngm e bury e

i ek b e e of i kot v wred ok b
ehectroig . S v g amd i e T s Cnte
wtreserey = bt s e T mwes ot e o
cheeteciy s b 8 prmn

e w HERL U arel WA resrtes

tar ok = ey v e e P e
bmtwu e cu i Aves st

i

-
Pt U cates s otk I e e o pamracmy
T s e T L T ———
o o 1t bayer poes, e

o e decrocsteires Furter
et o e
TR GEUTH AT ERTWRTN

Hemrobe e e oy e ey o e e o

T i chicint thaton = pooo seny, by mLoe s
Bt g miLe seomm, e o o sk shenes s
kgt sy BN sl peoici ki bk g For

it hary rucyrch wn |=-:k—.|d=r1i e apkiry Lo

mih fresteld vehes o nlllm u_—nkmuhi l—pxxlu
i g g ) o ] i -

Quality of recycled water Surnmary
T, oo gt ! crepeeeg e fo
nstmard s serhogen msheten |

‘Water qomldy .t wlazy Uaar i

[ 3 i i

- B & &

ey 0 20 20

ey e

il

gl
Ecob NS m

Lom of B From W T premerts wm. & potertast
rokames of werer et |z whectemosl
o At Sl

prmae
ey, wrbeity aec WO ord £
g ek e )1t sy o scldern
winbmmatr we effrcivrk. rermovesd it Eur cormer: e s
) S
Exmymeenty, e, pic] remen n e (1) This s mepe o
il s sk o e o mase i Sy ol W
= bt et hich brad e S denkiicn @ hey
s = oy e e B ol cotoeidors wiich
P s e o b e

Uprbate 6 3y ikl

Crlinkain Fmvis et




Technical viability

3-year ARC linkage project: Sustainable Hydrogen Production from Used Water

Objectives

1.To gain an in-depth understanding of how existing electrolysers perform in the presence of water

impurities, and develop guidelines for designing water electrolysers with high tolerance of water
2.To identify the water quality gap between the treated water from existing WWTPs and the required feed
water for water electrolysis, and provide recommendations for WWTPs operation and potential

upgrading;

3.To evaluate the technical feasibility of utilising the co-products from waster electrolysis in wastewater
treatment, and develop frameworks for the integration between wastewater treatment and water

electrolysis.
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Technical viability: Impacts of impurities & mitigation strategies
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Technical viability: Impacts of impurities & mitigation strategies
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Technical viability

« Volumes of water required: Theoretically 9kg of H,O to produce 1 kg H,. At
scale: estimated to be up to 90 kg electrolyser cooling

« Energy consumed for hydrogen production

Manufacturer Technology Name Operating Pressure Hydrogen Flowrate Energy Consumption Operating Range Water Consumption Power Electrical Efficiency
HOGEN 510 0.265 Nm?3/hr - 0.57kg/d 1.1 kw
HOGEN S20 13.8 barg 0.53 Nm3/hr - 1.14 kg/d 74 kWh/kg H, 0-100% 9.9 L/kg H 2.2 kW
HOGEN 540 1.05 Nm*/hr - 2.27 kg/dl 4.3 kW
Manufacturer 1 3
H2 2 Nm>/hr 81 kWh/kg H, 8.1 kW
H4 15 barg / 30 barg optiof 4 Nm3/hr 78 kWh/kg H, 0-100% 10.2 L/kg H, 16.1 kW
H6 6 Nm3/hr 76 kWh/kg H, 23.7 kW -
ME 100/350 15 - 30 barg 15-46.3 Nm3/hr 55 kWh/kg H, 32-100% 14.4 L/kg H; 225 kW 73%
ME 450/1400 15 - 30 barg 42-210 Nm3/hr 53 kWh/kg H, 20-100% 13.8 L/kg H; 1MW 74%
HCS 2MW 15 - 30 barg 420 Nm®/hr 16 L/kg H, 2 MW
HCS 4AMW 15 - 30 bar, 840 Nm®/hr <53 kWh/kg H; 20-100% 17 L/kg H; 4AMW >74%
Manufacturer 2 g
HCS 10MW 15 - 30 barg 2100 Nm3/hr 18 L/kg H; 10MW
$30/10 0-20 barg 0.22 Nm3/hr 29 kg/hr 1kw
S30/30 0-20 barg 0.66 Nm3/hr 87 kg/hr 3 kw 78%
$30/50 0-20 bar, 1.10 Nm/hr 145 kg/hr 5 kw
HyLYZER 200 200 Nm?3/hr
3 <55 kWh/kg H,
HyLYZER 250 250 Nm>/hr 5 - 100%
Manufacturer 3 HyLYZER 400 30 bar, 400 Nm3/hr 0 9 L/kg H,
3 <54 kWh/kg H,
HyLYZER 500 500 Nm>/hr
HyLYZER 1000 1000 Nm3/hr <51 kWh/kg H; 5-125%
M fact 4 SILYZER 200 35 bar 225 Nm3/h - 17 L/kg H; 1.25 MW 60-65%
anufacturer
SILYZER 300 1300 kg/hr 0-100% 10 L/kg H; ~70 MW >75.5 %




Scalability of production processes

» The scalability of production processes is also a key concern:
o Regional utilities: many plants distributed across a large geographic area.
 The risks associated with utility involvement in a hydrogen circular
economy are also poorly defined:
o Core business of a water utility?
 From a sustainability perspective a key potential risk is the allocation of
water for hydrogen production in regions where water resource

availability is subject to extreme variability due to climate change.

o In this context, how can we not only secure water for electrolysis but continue to
meet accessibility and affordability for other uses?
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Scalability:

I HYDROGENCR(

industry consortium

Water “core partnership” workshop May 6" 2022 (online) - Themes:

» Water sources and their social licence;

« Technology needs for water reuse and beneficial co-products;

» Co-location opportunities (including renewable energy generation) and
Integrated planning.

Contact me to join the workshop:
arash.zamyadi@waterra.com.au

Water
Research

.



Conclusion

» For successful integration of hydrogen and oxidant production into existing and newly
developed water/wastewater treatment facilities, research questions regarding viability,
scalability, sustainability and risks must be addressed.

* The potential gains are
however promising, and
adaptation of novel
technologies for water reuse
could facilitate a significant
improvement in the
sustainability and resilience of
water treatment processes.
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